
Internals of Nut/TLS

This document will introduce you to the inner workings of Nut/TLS,
the TLS 1.2 server implementation for the Nut/OS embedded operating
system.

Author: Daniel Otte

Status: Rev-1.1 11/2013

Contents

1 Overview...1
1.1 Features..1
1.2 A few words about TLS...1
1.3 Basic operation of Nut/TLS...2
1.3.1 Driver initialization...2
1.3.2 Opening a Nut/TLS stream...2
1.3.3 Assigning a stream to a Nut/TLS stream..2
1.3.4 Handshake..2
1.3.5 Send and receive data...3
1.3.6 Destruction of a Nut/TLS stream..3
1.4 Drivers point of view...3
1.4.1 Reading data..3
1.4.2 Sending data..3
1.5 Applications point of view..3
1.6 How the parts fit together...4
1.7 Implementation content..4
1.7.1 Header files..4
1.7.2 Implementation files..5

2 Basic data structures...5
2.1 tls_connection_t...6
2.1.1 name...6
2.1.2 next...6
2.1.3 connection..6
2.1.4 write_buffer..6
2.1.5 write_buffer_size..6
2.1.6 write_buffer_fill..6
2.1.7 read_buffer...7
2.1.8 write_buffer_protocol..7
2.1.9 closing...7
2.1.10 write_lock..7
2.2 tls_record_connection_t..7
2.2.1 base_stream...7
2.2.2 session_id...8
2.2.3 version..8
2.2.4 secure..8
2.2.5 post_clienthello..8
2.2.6 tx_pre_pattern..8
2.2.7 rx_pre_pattern..8
2.2.8 sec_parameters..8
2.2.9 sec_states_local...8
2.2.10 sec_states_remote...8
2.2.11 pending...9
2.2.12 pending_status...9
2.2.13 error_state..9

3 Buffering...9
3.1 Write buffer..9

3.1.1 Allocation..9
3.2 Read buffer...9

4 Packet reception...10

5 Packet transmission...11

6 The handshake process..11

7 Alert handling..13

1 Overview

1.1 Features

Supported cipher suites:

• TLS_RSA_WITH_AES_128_CBC_SHA256 (0x00,0x3C)

• TLS_RSA_WITH_AES_128_CBC_SHA (0x00,0x2F)

• TLS_RSA_WITH_AES_256_CBC_SHA256 (0x00,0x3D)

• TLS_RSA_WITH_AES_256_CBC_SHA (0x00,0x35)

• TLS_RSA_WITH_3DES_EDE_CBC_SHA (0x00,0x0A)

• TLS_RSA_WITH_RC4_128_SHA (0x00,0x05)

• TLS_RSA_WITH_RC4_128_MD5 (0x00,0x04)

• TLS_RSA_WITH_NULL_SHA256 (0x00,0x3B)

• TLS_RSA_WITH_NULL_SHA (0x00,0x02)

• TLS_RSA_WITH_NULL_MD5 (0x00,0x01)

1.2 A few words about TLS

TLS means Transport Layer Security and is available in several versions, which are
all available as RFCs. We are here concerned only with version 1.2 which is specified
in RFC 5246. TLS is also the successor of SSL, as the new name did not propagate
very well, most people still say "SSL" when they mean TLS.

TLS forms a tunnel for sensitive data over insecure channels. It neither defines what
data is transported nor over which channel the secure channel is established. A
common combination is transferring HTTP data via TLS over a TCP connection. This
is widely known as HTTPS.

TLS is basically a record protocol operating over a reliable stream (like a TCP
connection), with two specified additional protocols operating on top of it. A third
protocol would be the application stream which also has a specified protocol ID.

Each record transmitted over a TLS connection may be encrypted and/or signed by
the transmitting party.

The two important protocols which are part of TLS and are operating over the record
connection are the handshake protocol and the alert protocol.

The handshake protocol allows establishing a secure connection using asymmetric
cryptography while the alert protocol handles error and warning messages, which
are also used to gracefully close the connection.

It is important to know that the standard explicitly forbids application layer
communication before the first successful handshake is done.

1

1.3 Basic operation of Nut/TLS

Nut/OS offers you to use TCP connections like normal streams in C. Nut/TLS extends
this ides to use TLS connections also like normal streams. It even allows you to
operate your connection over any bidirectional stream (not only TCP connections
but also serial/UART lines).

The Nut/TLS core is implemented as Nut/OS driver. It offers the standard interface of
Nut/OS drivers and special functions, which are necessary for it to work.

The usage schema is quite simple:

1. Initialization of the driver

2. Opening an Nut/TLS stream

3. Assigning a stream to the Nut/TLS stream

4. Doing a handshake

5. Send and receive data

6. Close the Nut/TLS stream

1.3.1 Driver initialization

The initialization of the driver is started by the following code:

NutRegisterDevice(&devTLS, 0, 0);
This causes the creation of a dedicated thread which flushes the write buffers in
fixed intervals and the allocation of memory for the resumption table.

1.3.2 Opening a Nut/TLS stream

A Nut/TLS stream is opened like a regular file with fopen(). The name must start with
"tls:" to indicate that the Nut/TLS driver should be used to open this file. The prefix
"tls:" is followed by an identifier which is unique for each distinct TLS connection
running at the same time. The identifier may consist of any combination of the
letters "A" to "Z", "a" to "z", the numerical characters "0" to "9" and the character "_".
Opening an existing connection will result in a stream which is an alias to the
already opened stream.

1.3.3 Assigning a stream to a Nut/TLS stream

Due to the flexibility of Nut/TLS it is necessary to explicitly assign a stream to
operate on the Nut/TLS stream. This stream may be of any kind, but must be
bidirectional. In most cases this will be a stream obtained from a TCP socket
connection. The stream to operate on is also called the base stream.

1.3.4 Handshake

After the base stream is assigned, a basic record layer connection is established.
This connection does neither provide confidentiality nor integrity. To secure the

2

connection a handshake has to take place. Within this handshake the cryptographic
parameters are negotiated and cryptographic keys are exchanged which will protect
following data.

The handshake is normally initiated by the client after establishing the record
connection. To proceed the handshake the make_handshake() function is called. It
just takes a pointer to the Nut/TLS stream as parameter and returns zero on success.

1.3.5 Send and receive data

When the handshake is done, data exchange can begin. Exchanging data is as
simple as using fread(), fwrite(), fprintf(). All functions which can handle
streams will also work with Nut/TLS streams.

1.3.6 Destruction of a Nut/TLS stream

The connection is destroyed by calling fclose() with a pointer to the Nut/TLS
stream as parameter.

1.4 Drivers point of view

1.4.1 Reading data

When data is requested by the application, the driver first tries to fulfill the request
by using already buffered data. If the drivers buffer does not contain enough data, a
packet is read from the base stream, decrypted in-place and then chained into the
buffer. If the request can still not be fulfilled, it reads the next packet, decrypts it and
chains it into the buffer. This is repeated until the request can be fulfilled or an error
occurs. If an error occurs, the data which could be read is returned to the application.
The EOF flag and error indicator are set according to the reason of the error.

1.4.2 Sending data

If the data to send fits into the write buffer it is simply copied into the write buffer. If
the write buffer is full or the data does not fit into the write buffer, the content of the
write buffer is encrypted and send to the base stream. The remaining data is send in
a packet with a size which is equal to the size of the write buffer. If there is a last
block, which is smaller than the write buffer, it is copied into the write buffer.

Encrypting and sending the packet to the base stream is, opposed to the reading
behavior, handled by the lower layer functions. This avoids additional copying of the
data.

1.5 Applications point of view

Nut/TLS appears as filter to the application. It behaves like a normal C-style stream
(like stdin, stdout and stderr). The stream is bidirectional and binary only. All
the tools, which are able to operate on this kind of streams, are adequate for use
with Nut/TLS streams (like fread(), fwrite(), fprintf(), . . .).

3

But before normal operation can take place, it is necessary to properly start the
connection. Therefore a stream has to be assigned to the Nut/TLS stream and a
handshake has to be done. Since Nut/TLS is quite flexible it is possible to run TLS
connections over nearly any other bidirectional stream. A stream to operate on has
to be assigned to the Nut/TLS stream. This is done by int tls_ctl_set_stream
(FILE* tls_file, FILE* base_stream).

1.6 How the parts fit together

The driver-style implementation allows using TLS connections like normal streams.
But this abstraction covers only the TLS record level and the TLS alert protocol. The
implementation of handshake itself uses this level of abstraction and can therefore
not be integrated into the driver. Therefore it is necessary to initiate a handshake
manually after opening the connection. Also renegotiation is not implemented for
this and security reasons.

1.7 Implementation content

1.7.1 Header files

hexdump.h hex dump routines for debugging purposes

sec_memcmp.h secure version of memcmp()
server.key.h declaration of TLS private key structures

tls_alert_protocol.h declaration of alert functions

tls_alert_types.h declaration of alert related types and values

tls_certificate.h declaration of TLS certificate structures

tls_cipher_suites.h declaration of TLS cipher suites related
types and values

tls_crypto.h declaration of cryptographic core functions

tls_driver.h declaration of driver related functions and
types

tls_handshake.h declaration of handshake function

tls_handshake_protocol.h
tls_random.h declaration of PRNG related functions

tls_record_layer.h declaration of record-level TLS functions

tls_resumption.h declaration of functions and types related to
TLS session resumption

4

1.7.2 Implementation files

Hexdump.c hex dump routines for debugging
purposes

nuttls_test_system.cert.tls.elf certificate wrapped into an elf-
object

sec_memcmp.c secure version of memcmp()
server.key.c structures containing the private

key material

tls_alert_protocol.c alert protocol related functions

tls_cipher_suites.c structures and functions related to
TLS cipher suites

tls_crypto.c functions handling low level
symmetric crypto

tls_driver.c driver related functions and
structures

tls_handshake.c functions for the TLS handshake
protocol

tls_random.c PRNG wrapper around entropium1

tls_record_layer_common.c functions shared between TLS
record layer transmit and receive
functions

tls_record_layer_rx.c functions handling the reception of
TLS record layer packets

tls_record_layer_tx.c functions handling the transmission
of TLS record layer packets

tls_resumption.c functions for managing the
resumption table

tls_test.c demo application implementing a
HTTPS server

2 Basic data structures

The two most important structures are tls_connection_t and
tls_record_connection_t. tls_connection_t contains the driver related data,
while tls_record_connection_t contains the TLS related data.

1 Entropium is part of the ARM-Crypto-Lib.

5

2.1 tls_connection_t

typedef struct _tls_connection_t tls_connection_t;
struct _tls_connection_t {
 char *name;
 tls_connection_t *next;
 tls_record_connection_t connection;
 void *write buffer;
 size_t write_buffer_size;
 size_t write_buffer_fill;
 tls_read_buffer_block_header_t *read_buffer;
 uint8_t write_buffer_protocol;
 uint8_t closing;
 uint8_t write_lock;
};

2.1.1 name

The name field contains a pointer to a string of characters representing the name
given to the connection during fopen(). The name is actual the part after the initial
"tls:" prefix of the path.

2.1.2 next

The next pointer points to the next connection in memory, so that all connections
form a linked list.

2.1.3 connection

The connection field is a tls_record_connection (not a pointer), holding the
parameters of the TLS connection.

2.1.4 write_buffer

The write_buffer pointer points to some memory holding the write buffer.

2.1.5 write_buffer_size

write_buffer_size is the size of the buffer. The size is considered to be bytes.

2.1.6 write_buffer_fill

write_buffer_fill is the amount of actual data in the write buffer. Its unit is
bytes.

6

2.1.7 read_buffer

read_buffer points to the first block header for the read buffer.

2.1.8 write_buffer_protocol

write_buffer_protocol is the numeric protocol ID to use for data transmission.

2.1.9 closing

closing is a flag which indicates if the connection is currently in the process of
closing. If it is closing the field reads one else it reads zero.

2.1.10 write_lock

write_lock is a flag indicating if a write is in process. Write requests will be
blocked while this field is non-zero.

2.2 tls_record_connection_t

struct _tls_record_connection_t {
 FILE *base_stream;
 uint32_t session_id;
 union __attribute__((packed)) {
 struct {
 uint8_t major;
 uint8_t minor;
 } names;
 uint16_t id16;
 } version;
 uint8_t secure;
 uint8_t post_clienthello;
 tls_record_structure_pattern_t tx_pre_pattern;
 tls_record_ciphertext_struct_t rx_pre_pattern;
 tls_sec_parameters_t sec_parameters;
 tls_record_states_t sec_states_local;
 tls_record_states_t sec_states_remote;
 tls_record_pending_state_t *pending;
 uint8_t pending_status;
 tls_error_state_t error_state;
};

2.2.1 base_stream

base_stream is a pointer to the base stream.

7

2.2.2 session_id

session_id is a 32-bit session ID assigned to the connection. It is automatically
generated during handshake and can be used for session resumption.

2.2.3 version

The version field is a union holding the TLS protocol version used for
communication. It can be used as 16-bit ID (id16) or as major (names.major) and
minor (names.minor) part.

2.2.4 secure

The secure flag is used to signalize if a successful handshake has already took
place. It reads zero before the initial handshake and one afterwards.

2.2.5 post_clienthello

The post_clienthello flag is used to signalize if checks for packet version should
be relaxed. This is necessary since the initial clienthello may use a older record
layer version for compatibility.

2.2.6 tx_pre_pattern

The tx_pre_pattern field holds precomputed offset information for sending
packets. These data are computed after the crypto parameters are negotiated.

2.2.7 rx_pre_pattern

The rx_pre_pattern field holds precomputed offset information for receiving
packets. These data are computed after the crypto parameters are negotiated.

2.2.8 sec_parameters

The sec_parameters field holds the negotiated crypto parameters (incl.
master_secret, client_random and server_random).

2.2.9 sec_states_local

The sec_states_local field holds the contexts for cryptographic algorithms for
the sending side.

2.2.10 sec_states_remote

The sec_states_remote field holds the contexts for cryptographic algorithms for
the receiving side.

8

2.2.11 pending

pending points to a structure which contains the cryptographic parameters just
negotiated but not yet active. It will be used after receiving a change_cipher_spec
message.

2.2.12 pending_status

pending_status signalizes for which direction there are currently pending states.

2.2.13 error_state

error_state contains information about the last error which occurred.

3 Buffering

There are two buffers per connection, one for the receiving side and one for the
transmitting side.

3.1 Write buffer

The write buffer implementation is quite simple. The buffer consists of a memory
area allocated by create_new_connection() (in tls_driver.h). All data which
should be send out normally are just copied into the buffer and the whole buffer is
transmitted (by tls_connection_send_buffer in tls_driver.h) when it is full.
An exception are messages which are to large for the buffer. In this case the buffer is
send on the wire and then blocks of the message which all have the size of the
buffer. If data remains (which will not fill a whole buffer) it is copied into the buffer.

3.1.1 Allocation

The whole allocation of the buffer happens in create_new_connection() (in
tls_driver.h). The two macros INITIAL_WRITE_BUFFER_SIZE and
MIN_WRITE_BUFFER_SIZE are used to configure the allocation process. The function
first tries to allocate INITIAL_WRITE_BUFFER_SIZE bytes of memory, if that fails it
successively reduces the memory request to the half of the previous request and
tries again, until the requested is fulfilled or the requested size is below
MIN_WRITE_BUFFER_SIZE. If the requested size is lower than
MIN_WRITE_BUFFER_SIZE an error is returned.

3.2 Read buffer

Since TLS is a packet based protocol, always whole packets are received and
buffered as such. The buffered packets are managed by a linked list of header blocks
which contain the management information for those packets.

9

struct tls_read_buffer_block_header_st {
 uint8_t *head;
 uint8_t *buffer;
 tls_read_buffer_block_header_t *next;
 size_t remaining_bytes;
 uint8_t protocol;
};

4 Packet reception

The process of packet reception starts in read_packet_to_buffer() (in
tls_driver.h) which is called if the read buffer could not fulfill a read request (see
1.4.1).

First it allocates three buffers:

• buffer for holding the packet content

• packet_info for holding information generated by packet decryption

• header for holding information about the memory block (for inclusion in the
buffers linked list)

Then it reads the 5 byte packet header from the base stream into the just allocated
buffer.

offset size meaning

0 (byte) 1 (byte) sub-protocol

1 (byte) 2 (byte) protocol version

3 (byte) 2 (byte) remaining data bytes in packet

The standard limits the maximum amount of remaining bytes to 214 + 2048 (see RFC
5246 on page 21). This limit is checked, then optionally a compile time specified limit
(the macro MAX_RX_PACKET_LENGTH). If the length checks are passed the size of the
header buffer is expanded so it can hold the whole packet.

Then it reads the remaining part of the packet from the base stream into buffer.

Now the decryption routine tls_record_decode() gets called which decrypts the
packet in place and returns data in an information structure
(tls_record_packet_info_t).

Here the packet version is checked (for all packets except an initial client_hello)
and the length is checked again and decryption is delegated to
tls_crypto_decipher_packet().

In tls_crypto_decipher_packet() the decryption work is delegated to the CBC
or stream functions of the ARM-Crypto-Lib.

10

Back in tls_record_decode() the next thing is trying to compute the structure of
the packet. This computation is accelerated by precomputed tables based on the
negotiated parameters (compute_pattern()). After the structure is computed the
Message Authentification Code (MAC) is checked (check_mac()) and then the
message padding (check_padding()).

If any check goes wrong a proper alert message is generated and send to the base
stream.

The driver, after tls_record_decode() returns, copies necessary information from
packet_info into header and frees packet_info. The next step is checking the
protocol, if it is set to alert_proto(21) and takes action depending on what kind of
alert message was received (see 7 on page 13).

If the message is no fatal alert message or a close_notify it is chained into the
linked list forming the read buffer.

5 Packet transmission

The process of packet transmission starts in tls_connection_send_buffer() (in
driver.h) which is called when the write buffer is flushed (which occurs if the write
buffer is full or an external flush is issued also see 1.4.2 on page 3.

tls_connection_send_buffer() itself first checks the validity of the given
protocol number (it must be 20, 21, 22 or 23). After this basic check memory is
allocated for the pinfo structure of type tls_record_packet_info_t. This
structure is filled with the available data.

If the packet needs padding, a valid padding length is randomly selected by
random_pad_length().

Then a buffer for the packet is allocated. All further processing of the packet takes
place in this buffer.

After the address of the buffer is fixed, the structure of the packet is computed with
absolute values by compute_pattern().

Now the buffer is filled with copied data and a header is prepended.

6 The handshake process

The handshake initializes the cryptographic parameters of a TLS connection. It is run
at the beginning of a session and is initiated by the client. Multiple messages are
exchanged of which some are optional. A normal handshake (as shown by figure 1)
involves asymmetric cryptographic computations and so is very computing intense.

11

Client Server

ClientHello →
← ServerHello

← Certificate

← ServerHelloDone

ClientKeyExchange →
[ChangeCipherSpec] →
Finished →

← [ChangeCipherSpec]

← Finished

ApplicationData ←→ ApplicationData

Figure 1: TLS handshake as done by Nut/TLS

The standard allows re-handshaking, which means doing a handshake via an already
initialized session. This is not supported since it might be a security problem2. An
alternative to do a "normal" full handshake is to do an abbreviated handshake to
resume a session using common secrets that already have been computed between
the two parties. This abbreviated handshake is shown in figure 2. It is very fast since
only symmetric primitives are used to compute the new keys (derived from the
common secret and the random values exchanged with the hello messages).

Client Server

ClientHello →
← ServerHello

← [ChangeCipherSpec]

← Finished

[ChangeCipherSpec] →
Finished →
ApplicationData ←→ ApplicationData

Figure 2: Abbreviated TLS handshake as done by Nut/TLS

The handshake implementation (tls_handshake.c) works on top of the record
layer. It is currently restricted to RSA cipher suites but can easily be replaced. The
handshake handling routine make_handshake()is called directly by the application
after opening the Nut/TLS stream file. make_handshake() waits for an incoming

2 See RFC 5746 for a description of the attack

12

client_hello message and then starts the negotiation. It returns zero on success
and non-zero if an error occurred.

Since all handshake messages start with a three byte length field, a generic function
is used to read handshake messages and allocate memory for them
(read_handshake_packet).

The certificate message, which Nut/TLS sends to the client, is stored completely
(with handshake header) in FLASH memory. It is created by specific tools
(cert_merge) before compilation and is linked in during the linking stage. Since
usage of the data positioned by the linker requires knowledge of the symbols
referring to the binary blob, those are defined as macros (CERT_BLOB_START,
CERT_BLOB_END and CERT_BLOB_SIZE).

The private RSA key is stored in server.key.c which defines multiple biginteger
objects needed to do the RSA computations.

Users must replace the certificate and the key by self created ones where the key
should be kept strictly secret.

7 Alert handling

Alert handling is directly done by the driver and the record layer. The main purpose
of the alert protocol is to signal warnings, errors and regular termination of the
communication. The last is especially important, since abnormal termination by a
fatal error causes the session to be not resume-able. Handling of incoming alert
messages is done directly after the packet is decrypted and before it would be stored
in the read buffer. Every alert is send to the tls_alert_receive() function (in
alert_protocol.c) and further checked and processed. This would be the place to
handle specific errors if the application needs such handling. The return value of
tls_alert_receive() signals, if a connection should be terminated or if it can
further operate. If a fatal error or a close notify occurs, the connection will be
terminated, which is handled by the function in the driver.

Sending alert messages (due to problems) happens by a call to tls_alert_send().
This function accepts an additional comment, which will be logged, if logging is
enabled.

egnite GmbH l Erinstrasse 9, 44575 Castrop-Rauxel, Germany
Tel.: +49 (0) 23 05-44 12 56 l Fax: +49 (0) 23 05-44 14 87 l E-Mail: info@egnite.de

www.egnite.de l www.ethernut.de

13

	1	Overview	1
	2	Basic data structures	5
	3	Buffering	9
	4	Packet reception	10
	5	Packet transmission	11
	6	The handshake process	11
	7	Alert handling	13
	1 Overview
	1.1 Features
	1.2 A few words about TLS
	1.3 Basic operation of Nut/TLS
	1.3.1 Driver initialization
	1.3.2 Opening a Nut/TLS stream
	1.3.3 Assigning a stream to a Nut/TLS stream
	1.3.4 Handshake
	1.3.5 Send and receive data
	1.3.6 Destruction of a Nut/TLS stream

	1.4 Drivers point of view
	1.4.1 Reading data
	1.4.2 Sending data

	1.5 Applications point of view
	1.6 How the parts fit together
	1.7 Implementation content
	1.7.1 Header files
	1.7.2 Implementation files

	2 Basic data structures
	2.1 tls_connection_t
	2.1.1 name
	2.1.2 next
	2.1.3 connection
	2.1.4 write_buffer
	2.1.5 write_buffer_size
	2.1.6 write_buffer_fill
	2.1.7 read_buffer
	2.1.8 write_buffer_protocol
	2.1.9 closing
	2.1.10 write_lock

	2.2 tls_record_connection_t
	2.2.1 base_stream
	2.2.2 session_id
	2.2.3 version
	2.2.4 secure
	2.2.5 post_clienthello
	2.2.6 tx_pre_pattern
	2.2.7 rx_pre_pattern
	2.2.8 sec_parameters
	2.2.9 sec_states_local
	2.2.10 sec_states_remote
	2.2.11 pending
	2.2.12 pending_status
	2.2.13 error_state

	3 Buffering
	3.1 Write buffer
	3.1.1 Allocation

	3.2 Read buffer

	4 Packet reception
	5 Packet transmission
	6 The handshake process
	7 Alert handling

